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@) autonomous bike model, greater impact on reduced
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* Fleet rebalancing to optimally serve demand with supply in real-time Ble Sisian Coreiane s ea iy
* Reducing the cost and footprint of sharing station infrastructure RC &
* Decreasing costs of damage & theft Path-marking
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AutoBike technology enables bicycles to cruise autonomously while rider- Socket.io
less (recognize road boundaries & avoid collision) and provide route Front-end user interface provides: << Video, Location | \ode.js-based server platform
guidance and rider monitoring while ridden. * Choice of mode of operation Il v e o e & Status msgs. . ki v g
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Can be automatically rented via RFID cards either on-the-fly, or via pre- * Videofeed from the bike M owechage omgaive | ATt eboe g A of failures
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Automatic prompt for human High level route planning utilising
Only marginally more expensive than standard electric bicycles. intervention if vision system fails. spline interpolation between the GPS
A waypoints.
Record human actions for later _ . _
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& Torque requirement is 6.2 N-m S S reckoning
The prototype shown consists of: d G
 Electromagnetic (EM) clutch n ¢ WebRTC
* Bevel gear train (2:1 speed ratio) 2
* Worm gear motor (12V DC, 60 W) - . E -
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Steering accuracy is 12 degrees at 30 g .8- i GEJ _5
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Feedback is from an absolute rotary encoder connected to the A

steering column by belt & pulley.

Supervisory Controller
& Vision System

Propulsion & Braking

= 1 » — , Android phone with camera
250 W brushless DC hub motor on its front wheel x A 4 - P E = running a custom app.

Autonomous operating speeds limited to 4-5 km/h

for safety concerns. OpenCV image processing to determine

Safe Operating Envelope:
Autonomous Braking by a separate cantilever braking
system operated by an electric linear actuator (23 N
peak force)

* High-pass filter (figure a)
 Canny edge detection & probabilistic Hough
line detection filter (figure b)

Max. deceleration around 0.09 G on planar roads.  Modified RANSAC algorithm (figure c)

Decision tree voting structure to determine bike direction,
overall control system by a feed-forward model

Wheel Retraction & Path-marking -
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for wheel retraction.

Low-level Controller

TI AM335x series processor packaged in the
BeagleBone Black

Picture below shows wheels lifted
up.

For localization, deposit UV

markings on roads.

Sensed with a second image
Sensor.

Running ‘bare-metal’ for higher level of
H-Bridge determinism & executes in hard real-time at

PERe 4 Channel 1 kHz with boot times well under 2 seconds.
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<< Power & commands to actuators MC33352VW [x2

. Low-level controller code authored in
Microprocessor H-Bridge

Automatic or manual deposition SEEE L 0 S MATLAB & Simulink which allows easy reuse

through a §et of se.lectable stencils 10 GHz CorePLL 14A F/108 Cn: [T applications.
to encode information. Sensor signals >> 2000 MIPS BTN73E0 | <2
212 ME RAM Microcontroller
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Conclusion & Future Work Aog/GrO/ , e e a
The bike is fully remote-controllable and is able to follow lanes autonomously now. : > &a
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Work on obstacle detection & collision avoidance and recognition of traffic lights & <> il »
—— symbols is in progress. Further on, the following are planned: FT2306-U - _
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CENTRE  Automatic recovery mechanism in case of vehicle roll-over ¢
smove * Self-stabilized operation (i.e. retract the supporting wheels) at higher speeds
* Extending the application to 3-wheeled e-scooters & implement in SUTD campus




